Exercise 1.3.50* (gcd abound)

Show that

( ab , cd ) = ( a , c ) ( b , d ) ( a ( a , c ) , d ( b , d ) ) ( c ( a , c ) , b ( b , d ) ) .

Answers

Here we write gcd ( a , b ) = ( a , b ) .

Proof. Let p 1 , , p k the prime factors of one of the integers a , b , c , d . Then the decompositions of a , b , c , d in prime factors are

a = p 1 a 1 p k a k , b = p 1 b 1 p k b k , c = p 1 c 1 p k c k , d = p 1 d 1 p k d k ,

where a i 0 , b i 0 , c i 0 , d i 0 .

Then, writing only the first factor,

a ( a , c ) = p 1 a 1 min ( a 1 , c 1 ) , b ( b , d ) = p 1 d 1 min ( b 1 , d 1 ) , ( a ( a , c ) , d ( b , d ) ) = p 1 min ( a 1 min ( a 1 , c 1 ) , d 1 min ( b 1 , d 1 ) ) , ( c ( a , c ) , b ( b , d ) ) = p 1 min ( c 1 min ( a 1 , c 1 ) , b 1 min ( b 1 , d 1 ) ) .

Therefore

( a , c ) ( b , d ) ( a ( a , c ) , d ( b , d ) ) ( c ( a , c ) , b ( b , d ) ) = p 1 min ( a 1 , c 1 ) + min ( b 1 , d 1 ) + min ( a 1 min ( a 1 , c 1 ) , d 1 min ( b 1 , d 1 ) ) + min ( c 1 min ( a 1 , c 1 ) , b 1 min ( b 1 , d 1 ) ) ,

and

( a , b ) ( c , d ) = p 1 min ( a 1 , b 1 ) + min ( c 1 , d 1 ) .

The property is proved if we verify, for all natural numbers A , B , C , D ,

min ( A + B , C + D ) = min ( A , C ) + min ( B , D ) + min ( A min ( A , C ) , D min ( B , D ) ) + min ( C min ( A , C ) , B min ( B , D ) ) . ( 1 )

Note that left and right members of this equality are invariant if we replace simultaneously A by C and B by D (i.e. by the permutation σ = ( A B C D C D A B ) ). This allows us the reduce the numbers of cases in the verification.

  • If A C and B D , then A + B A + D , so min ( A + B , C + D ) = A + B , and

    min ( A , C ) + min ( B , D ) = A + B min ( A min ( A , C ) , D min ( B , D ) ) = min ( 0 , D B ) = 0 min ( C min ( A , C ) , B min ( B , D ) ) = min ( C A , 0 ) = 0

    thus (1) is true.

  • If A C and B D : idem, using the permutation σ .
  • If A C and B D ,

    min ( A , C ) + min ( B , D ) = A + D min ( A min ( A , C ) , D min ( B , D ) ) = min ( 0 , 0 ) = 0 min ( C min ( A , C ) , B min ( B , D ) ) = min ( C A , B D )

    It remains to show

    min ( A + B , C + D ) = A + D + min ( C A , B D ) ,

    with two sub-cases:

    If A + B C + D , then C A B D , therefore A + D + min ( C A , B D ) = A + D + B D = A + B = min ( A + B , C + D ) .

    If A + B C + D , then C A B D , therefore A + D + min ( C A , B D ) = A + D + C A = C + D = min ( A + B , C + D ) .

  • If A C and B D : idem, using the permutation σ .

This proves (1), and so

( ab , cd ) = ( a , c ) ( b , d ) ( a ( a , c ) , d ( b , d ) ) ( c ( a , c ) , b ( b , d ) ) .

User profile picture
2024-07-18 08:48
Comments