Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.14 ($7 \mid (3^{2n+1} + 2^{n+2})$ for all $n$)

Exercise 2.1.14 ($7 \mid (3^{2n+1} + 2^{n+2})$ for all $n$)

Show that 7 ( 3 2 n + 1 + 2 n + 2 ) for all n .

Answers

Proof. Since 9 2 ( mod 7 ) ,

3 2 n + 1 + 2 n + 2 = 3 9 n + 4 2 n 3 2 n + 4 2 n = 7 2 n 0 ( mod 7 ) .

Therefore

7 3 2 n + 1 + 2 n + 2

for all integer n . □

User profile picture
2024-08-21 10:26
Comments