Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.15 ($x$ satisfies at least one of the given congruences)

Exercise 2.1.15 ($x$ satisfies at least one of the given congruences)

Find integers a 1 , , a 5 such that every integer x satisfies at least one of the congruences x a 1 ( mod 2 ) , x a 2 ( mod 3 ) , x a 3 ( mod 4 ) , x a 4 ( mod 6 ) , x a 5 ( mod 12 ) .

Answers

Proof. We want to exhaust all classes modulo 12 .

Take ( a 1 , a 2 , a 3 , a 4 , a 5 ) = ( 1 , 2 , 0 , 4 , 6 ) .

Then

x 1 ( mod 2 ) x 1 , 3 , 5 , 7 , 9 , 11 ( mod 12 ) , x 2 ( mod 3 ) x 2 , 5 , 8 , 11 ( mod 12 ) , x 0 ( mod 4 ) x 0 , 4 , 8 ( mod 12 ) , x 4 ( mod 6 ) x 4 , 10 ( mod 12 , ) x 6 ( mod 12 ) x 6 ( mod 12 ) .

All classes modulo 12 are represented in the right members.

If x is any integer, there is some i [ [ 0 , 11 ] ] such that x i ( mod 12 ) . Therefore x satisfies at least one of the congruences x 1 ( mod 2 ) , x 2 ( mod 3 ) , x 0 ( mod 4 ) , x 4 ( mod 6 ) , x 6 ( mod 12 ) .

(There are many other solutions.) □

User profile picture
2024-08-21 10:30
Comments