Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.17 ($61! + 1 \equiv 63! + 1 \equiv 0 \pmod{71}$)

Exercise 2.1.17 ($61! + 1 \equiv 63! + 1 \equiv 0 \pmod{71}$)

Show that 61 ! + 1 63 ! + 1 0 ( mod 71 ) .

Answers

Proof. By Wilson’s theorem, modulo 71

1 70 ! 63 ! 64 65 66 67 68 69 70 63 ! ( 7 ) ( 6 ) ( 5 ) ( 4 ) ( 3 ) ( 2 ) ( 1 ) 63 ! 7 ! ( mod 71 ) .

Since 7 ! = 5040 = 70 72 = 7 1 2 1 1 ( mod 71 ) ,

1 63 ! ( mod 71 ) .

Moreover, 63 62 ( 8 ) ( 9 ) 72 1 ( mod 71 ) , therefore

1 63 ! 61 ! 62 63 61 ! ( mod 71 ) .

This proves that

61 ! + 1 63 ! + 1 0 ( mod 71 ) .

User profile picture
2024-08-21 10:33
Comments