Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.18 (if $p\equiv 3 \pmod 4$, then $\left(\frac{p-1}{2} \right)! \equiv \pm 1 \pmod p$)

Exercise 2.1.18 (if $p\equiv 3 \pmod 4$, then $\left(\frac{p-1}{2} \right)! \equiv \pm 1 \pmod p$)

Show that if p 3 ( mod 4 ) , then ( p 1 2 ) ! ± 1 ( mod p ) .

Answers

Proof. In the proof of Theorem 2.12, we saw that for odd primes p , Wilson’ theorem gives the following congruences modulo p :

1 ( p 1 ) ! j = 1 ( p 1 ) 2 j j = ( p + 1 ) 2 p 1 j j = 1 ( p 1 ) 2 j i = 1 ( p 1 ) 2 ( p i ) ( j = p i ) j = 1 ( p 1 ) 2 j j = 1 ( p 1 ) 2 ( p j ) j = 1 ( p 1 ) 2 j ( p j ) ( 1 ) ( p 1 ) 2 j = 1 ( p 1 ) 2 j 2 ( 1 ) ( p 1 ) 2 [ ( p 1 2 ) ! ] 2 ( mod p ) .

Therefore

[ ( p 1 2 ) ! ] 2 ( 1 ) ( p + 1 ) 2 ( mod p ) .

If p 3 ( mod 4 ) , p = 3 + 4 k , k , thus p + 1 2 = 2 ( k + 1 ) is even, so ( 1 ) ( p + 1 ) 2 = 1 . in this case,

[ ( p 1 2 ) ! ] 2 1 ( mod p ) .

Then

p [ ( p 1 2 ) ! 1 ] [ ( p 1 2 ) ! + 1 ] .

Since p is a prime number,

p ( p 1 2 ) ! 1  or  p ( p 1 2 ) ! + 1 .

This show that

( p 1 2 ) ! ± 1 ( mod p ) .

User profile picture
2024-08-21 10:35
Comments