Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.27 ($\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ is an integer)

Exercise 2.1.27 ($\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ is an integer)

Prove that 1 5 n 5 + 1 3 n 3 + 7 15 n is an integer for every integer n .

Answers

Let

N = 1 5 n 5 + 1 3 n 3 + 7 15 n = 3 n 5 + 5 n 3 + 7 n 15 .

To prove that N is an integer, we prove 15 3 n 5 + 5 n 3 + 7 n .

First, reducing modulo 3 ,

3 n 5 + 5 n 3 + 7 n ( n 3 n ) 0 ( mod 3 ) ,

by Fermat’s theorem. Next, reducing modulo 5 ,

3 n 5 + 5 n 3 + 7 n 3 ( n 5 n ) 0 ( mod 5 ) ,

by the same theorem.

Therefore, 3 3 n 5 + 5 n 3 + 7 n , and 5 3 n 5 + 5 n 3 + 7 n , where 3 5 = 1 , thus 15 3 n 5 + 5 n 3 + 7 n .

This proves that 1 5 n 5 + 1 3 n 3 + 7 15 n is an integer for every integer n .

User profile picture
2024-07-31 08:12
Comments