Exercise 2.1.29 (Last digit of $2^{400}$)

What is the last digit in the ordinary decimal representation of 2 400 ?

Answers

Proof. Note that 2 4 1 ( m o d 5 ) , thus 2 4 0 0 = ( 2 4 ) 1 0 0 1 ( m o d 5 ) .

Moreover 2 4 0 0 0 ( m o d 2 ) .

Write n = 2 4 0 0 . We know that

n 1 ( m o d 5 ) , n 0 ( m o d 2 ) .

Therefore

n 6 ( m o d 5 ) , n 6 ( m o d 2 ) .

Since 5 n 6 and 2 n 6 , where 5 2 = 1 , we obtain 1 0 n 6 , so

n 6 ( m o d 1 0 ) .

The last digit of 2 4 0 0 is 6 .

( 2 4 0 0 = 2 5 8 2 2 4 9 8 7 8 0 8 6 9 0 8 5 8 9 6 5 5 9 1 9 1 7 2 0 0 3 0 1 1 8 7 4 3 2 9 7 0 5 7 9 2 8 2 9 2 2 3 5 1 2 8 3 0 6 5 9 3 5 6 5 4 0 6 4 7

622016841194629645353280137831435903171972747493376 .

Thanks to ipython! )

User profile picture
2024-07-31 08:38
Comments