Exercise 2.1.43 (Consequences of Wilson's theorem)

If p is an odd prime, prove that:

1 2 3 2 5 2 ( p 2 ) 2 ( 1 ) ( p + 1 ) 2 ( mod p ) .

and

2 2 4 2 6 2 ( p 1 ) 2 ( 1 ) ( p + 1 ) 2 ( mod p ) .

Answers

Proof. Recall from the text (proof of theorem 2.12) that, by Wilson’s theorem, for any odd prime p ,

( 1 2 3 ( p 1 2 ) ) ( ( p + 1 2 ) ( p 3 ) ( p 2 ) ( p 1 ) ) 1 ( mod p ) ,

so that

j = 1 ( p 1 ) 2 j ( p j ) 1 ( mod p ) ,

therefore

( 1 ) p 1 2 j = 1 ( p 1 ) 2 j 2 1 ( mod p ) ,

which gives

j = 1 ( p 1 ) 2 j 2 ( 1 ) p + 1 2 ( mod p ) . (1)

Write

P = 2 2 4 2 6 2 ( p 1 ) 2 , Q = 1 2 3 2 5 2 ( p 2 ) 2 .

Then

P = k = 1 ( p 1 ) 2 ( 2 k ) 2 = 2 p 1 k = 1 ( p 1 ) 2 k 2 k = 1 ( p 1 ) 2 k 2 (by Fermat’s theorem) ( 1 ) p + 1 2 ( mod p ) (by (1)) .

Now, by Wilson’s theorem,

PQ = ( p 1 ) ! 2 = 1 .

Therefore,

( 1 ) p + 1 2 Q 1 ( mod p ) ,

so

Q ( 1 ) p + 1 2 ( mod p ) .

The conclusion is

2 2 4 2 6 2 ( p 1 ) 2 ( 1 ) p + 1 2 ( mod p ) , 1 2 3 2 5 2 ( p 2 ) 2 ( 1 ) p + 1 2 ( mod p ) .
User profile picture
2024-08-03 08:49
Comments