Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 2.1.46* ($a^p \equiv b^p \pmod p \Rightarrow a^p \equiv b^p \pmod {p^2}$)
Exercise 2.1.46* ($a^p \equiv b^p \pmod p \Rightarrow a^p \equiv b^p \pmod {p^2}$)
For any prime , if , prove that .
Answers
Proof. Assume that . By Fermat’s theorem, and , thus
So for some integer . Then, by the binomial formula,
where is an integer. Therefore
□
2024-08-03 10:36