Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.46* ($a^p \equiv b^p \pmod p \Rightarrow a^p \equiv b^p \pmod {p^2}$)

Exercise 2.1.46* ($a^p \equiv b^p \pmod p \Rightarrow a^p \equiv b^p \pmod {p^2}$)

For any prime p , if a p b p mod p , prove that a p b p ( mod p 2 ) .

Answers

Proof. Assume that a p b p ( mod p ) . By Fermat’s theorem, a p a ( mod p ) and b p b ( mod p ) , thus

a b ( mod p ) .

So b = a + kp for some integer k . Then, by the binomial formula,

b p = ( a + kp ) p = a p + ( p 1 ) a p 1 kp + j = 2 p ( p j ) a p j k j p j = a p + a p 1 k p 2 + K p 2 ,

where K = j = 2 p ( p j ) a p j k j p j 2 is an integer. Therefore

b p a p ( mod p 2 ) .

User profile picture
2024-08-03 10:36
Comments