Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.48* (Product of complete residue systems modulo $p$)

Exercise 2.1.48* (Product of complete residue systems modulo $p$)

If r 1 , r 2 , , r p and r 1 , r 2 , , r p are any two complete residue systems modulo a prime p > 2 , prove that the set r 1 r 1 , r 2 r 2 , , r p r p cannot be a complete residue system modulo p .

Answers

Proof. Let { r 1 , r 2 , , r p } and { r 1 , r 2 , , r p } be two complete residue systems modulo a prime p > 2 . Assume for contradiction that { r 1 r 1 , r 2 r 2 , , r p r p } is a complete residue system modulo p .

As for every complete residue system, there exists one and only one index i 0 such that r i 0 r i 0 0 ( mod p ) . So r i r i 0 ( mod p ) if i i 0 , thus r i 0 ( mod p ) and r i 0 if i i 0 . Therefore r i 0 0 r i 0 ( mod p ) . Without loss of generality, we may assume that i 0 = p , so that

{ r 1 , , r p 1 } , { r 1 , , r p 1 } , { r 1 r 1 , , r p 1 r p 1 } ,

are three reduced residue system modulo p .

By Exercise 47,

1 i = 1 p 1 r i , 1 i = 1 p 1 r i , 1 i = 1 p 1 r i r i ( mod p ) .

Then

1 i = 1 p 1 r i r i = i = 1 p 1 r i i = 1 p 1 r i ( 1 ) ( 1 ) = 1 ( mod p ) .

Thus 1 1 ( mod p ) , so p = 2 . This is a contradiction since p > 2 by hypothesis.

So { r 1 r 1 , r 2 r 2 , , r p r p } cannot be a complete residue system modulo p . □

User profile picture
2024-08-03 16:16
Comments