Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.51 ( $(p-1)! \equiv p-1 \pmod{ 1 + 2 +\cdots + (p-1)}$ if $p$ is a prime)

Exercise 2.1.51 ( $(p-1)! \equiv p-1 \pmod{ 1 + 2 +\cdots + (p-1)}$ if $p$ is a prime)

Prove that ( p 1 ) ! p 1 ( mod 1 + 2 + + ( p 1 ) ) if p is a prime.

Answers

Proof. If p = 2 , then ( p 1 ) ! = ( 2 1 ) ! = 1 = p 1 , a fortiori ( p 1 ) ! is congruent to p 1 modulo any integer.

Suppose now that p is an odd prime. Then

1 + 2 + + ( p 1 ) = p 1 2 p .

Since p 1 2 p = 1 (because p 2 ( p 1 2 ) = 1 ), it suffices to show that

( p 1 ) ! p 1 ( m o d p ) , (1) ( p 1 ) ! p 1 ( m o d ( p 1 ) 2 ) . (2)
(1)
By Wilson’s theorem, ( p 1 ) ! 1 p 1 ( m o d p ) .

(2)
Since p 1 2 p 1 , ( p 1 ) ! 0 p 1 ( m o d ( p 1 ) 2 ) .

So p ( p 1 ) ! ( p 1 ) and p 1 2 p 1 ) ! ( p 1 ) , where p 1 2 p = 1 . Therefore p 1 2 p ( p 1 ) ! ( p 1 ) .

For any prime p ,

( p 1 ) ! p 1 ( m o d 1 + 2 + + ( p 1 ) ) ) .

User profile picture
2024-08-04 16:03
Comments