Exercise 2.1.54 (Pseudoprimes and Carmichael numbers)

(a)
Noting the factoring 341 = 11 31 , verify that 2 5 1 ( mod 31 ) and hence that 2 341 2 ( mod 341 ) , but 3 341 3 ( mod 341 ) .
(b)
Using the factoring 561 = 3 11 17 , prove that a 561 a ( mod 561 ) holds for every integer a .

Answers

Proof.

a)
Since 2 5 = 32 1 ( mod 31 ) , then 2 340 = ( 2 5 ) 6 8 1 ( mod 31 ) , thus 2 341 2 ( mod 31 ) .

Similarly, 2 5 1 ( mod 11 ) , thus 2 10 1 ( mod 11 ) , then 2 340 = ( 2 10 ) 34 1 ( mod 11 ) , thus

2 341 2 ( mod 11 ) .

Using 31 2 341 2 , and 11 2 341 2 , where 31 11 = 1 , we obtain 31 11 2 341 2 , so

2 341 2 ( mod 341 ) .

(But 3 341 168 3 ( mod 341 ) .)

So 341 = 11 31 is a pseudo-prime to the base 2 .

b)
  • If a 0 ( mod 3 ) , a 561 a 0 ( mod 3 ) .

    If not, a 2 1 ( mod 3 ) (Fermat’s theorem), and 2 560 , thus a 560 1 ( mod 3 ) , therefore

    a 561 a ( mod 3 ) .

  • If a 0 ( mod 1 ) 1 , a 561 a 0 ( mod 11 ) .

    If not, a 10 1 ( mod 11 ) (Fermat’s theorem), and 10 560 , thus a 560 1 ( mod 11 ) , therefore

    a 561 a ( mod 11 ) .

  • If a 0 ( mod 1 ) 7 , a 561 a 0 ( mod 17 ) .

    If not, a 16 1 ( mod 17 ) (Fermat’s theorem), and 16 560 = 16 × 35 , thus a 560 1 ( mod 17 ) , therefore

    a 561 a ( mod 17 ) .

Since 3 , 11 , 17 are relatively prime in pairs, 3 11 17 a 561 a , so

a , a 561 a ( mod 561 ) .

The composite integer 561 is a Carmichael number.

User profile picture
2024-08-05 13:39
Comments