Exercise 2.1.55 ( Congruences and determinant)

Let A = [ a ij ] and B = [ b ij ] be two n × n matrices with integral entries. Show that if a ij b ij ( mod m ) for all i , j , then det ( A ) det ( B ) ( mod m ) ) . Show that

det ( 4771 1452 8404 3275 9163 6573 8056 7312 2265 3639 9712 2574 4612 4321 7196 8154 2701 6007 2147 7465 2158 7602 5995 2327 8882 ) 0 .

Hint: Find a small modulus m for which the given determinant is 0 ( mod m ) .

Answers

Proof. If a ij b ij ( mod m ) for all i , j , then a σ ( i ) , i b σ ( i ) , i for all i [ [ 1 , n ] ] and all permutations σ S n . Therefore

det ( A ) = σ S n 𝜀 ( σ ) i = 1 n a σ ( i ) , i σ S n 𝜀 ( σ ) i = 1 n b σ ( i ) , i = det ( B ) ( mod m ) .

Take

A = ( 4771 1452 8404 3275 9163 6573 8056 7312 2265 3639 9712 2574 4612 4321 7196 8154 2701 6007 2147 7465 2158 7602 5995 2327 8882 )

This matrix is not invertible modulo 2 , 3 , 5 , thus we reduce A modulo 7 . The class of det ( A ) in the field 𝔽 7 is, using Gauss’ reduction,

det A ¯ = | 4 3 4 6 0 0 6 4 4 6 3 5 6 2 0 6 6 1 5 3 2 0 3 3 6 | = + | 4 0 0 0 0 0 6 4 4 6 3 1 3 1 0 6 5 2 3 3 2 2 1 0 6 | ( C 2 C 2 + C 1 , C 3 C 3 C 1 , C 4 C 4 + 2 C 1 ) = + | 4 0 0 0 0 0 6 0 0 0 3 1 0 5 6 6 5 1 2 5 2 2 2 1 4 | ( C 3 C 3 + 4 C 2 , C 4 C 4 + 4 C 2 , C 5 C 5 C 2 ) = | 4 0 0 0 0 0 6 0 0 0 3 1 5 0 6 6 5 2 1 5 2 2 1 2 4 | ( C 3 C 4 ) = | 4 0 0 0 0 0 6 0 0 0 3 1 5 0 0 6 5 2 1 4 2 2 1 2 0 | ( C 5 C 5 + 3 C 3 ) = | 4 0 0 0 0 0 6 0 0 0 3 1 5 0 0 6 5 2 1 0 2 2 1 2 6 | ( C 5 C 5 + 3 C 4 ) = 4 6 5 1 6 = 1 .

Therefore det ( A ) 1 ( mod 7 ) , so det ( A ) 0 . □

Note: With Sage, det ( A ) = 5354628584068202790 .

User profile picture
2024-08-06 14:13
Comments