Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.1.57 (Multiplicativity of the norm in $\mathbb{Q}(\sqrt{-2})$)

Exercise 2.1.57 (Multiplicativity of the norm in $\mathbb{Q}(\sqrt{-2})$)

Show that ( a + b 2 ) ( c + d 2 ) = ( ac 2 bd ) + ( bc + ad ) 2 . Thus or otherwise show that ( a 2 + 2 b 2 ) ( c 2 + 2 d 2 ) = ( ac 2 bd ) 2 + 2 ( bc + ad ) 2 .

Answers

Proof. Let a , b , c , d be integers (or rational numbers). We choose 2 = i 2 (same result if we choose 2 = i 2 ). Then

( a + b 2 ) ( c + d 2 ) = ( a + i 2 b ) ( c + i 2 d ) = ( ac 2 bd ) + i 2 ( bc + ad ) = ( ac 2 bd ) + ( bc + ad ) 2 .

Then

( a 2 + 2 b 2 ) ( c 2 + 2 d 2 ) = [ ( a + i 2 b ) ( a i 2 b ) ] [ ( c + i 2 d ) ( c i 2 d ) ] = [ ( a + i 2 b ) ( c + i 2 d ) ] [ ( a i 2 b ) ( c i 2 d ) ] = [ ( ac 2 bd ) + i 2 ( bc + ad ) ] [ ( ac 2 bd ) i 2 ( bc + ad ) ] = ( ac 2 bd ) 2 + 2 ( bc + ad ) 2 .

This shows

( a 2 + 2 b 2 ) ( c 2 + 2 d 2 ) = ( ac 2 bd ) 2 + 2 ( bc + ad ) 2 .

User profile picture
2024-08-07 08:39
Comments