Exercise 2.2.5 (Solutions of some congruences)

Find all solutions of the congruences

( a ) 20 x 4 ( mod 30 ) ; ( e ) 64 x 83 ( mod 105 ) ; ( b ) 20 x 30 ( mod 4 ) ; ( f ) 589 x 209 ( mod 817 ) ; ( c ) 353 x 254 ( mod 400 ) ; ( g ) 49 x 5000 ( mod 999 ) . ( d ) 57 x 87 ( mod 105 ) ;

Answers

Proof.

(a)
Since gcd ( 20 , 30 ) = 10 4 , there is no solution to 20 x 4 ( mod 30 ) .

( 20 x 4 = 30 k 10 4 5 2 : this is absurd.)

(b)
Since gcd ( 4 , 20 ) = 4 30 , there is no solution to 20 x 30 ( mod 4 ) .
(c)
The Bézout’s algorithm gives the inverse of 353 modulo 400 , which is 17 . Therefore 353 x 254 ( mod 400 ) x 254 × 17 ( mod 400 ) x 318 ( mod 400 ) .

Check: 353 × 318 254 ( mod 400 ) .

(d)
57 x 87 ( mod 105 ) 19 x 29 ( mod 35 ) x 29 × 24 ( mod 35 ) x 31 ( mod 35 ) .

This gives 3 solutions modulo 105 :

x 31 , 66 , 101 ( mod 105 ) .

(e)
64 x 83 ( mod 105 ) x 83 × 64 ( mod 105 ) x 62 ( mod 105 ) .
(f)
Since 19 divides 589 , 817 and 209 , 589 x 209 ( mod 817 ) 31 x 11 ( mod 43 ) x 11 × 25 ( mod 43 ) x 17 ( mod 43 ) .

This gives 19 solutions modulo 817 : x

17 , 60 , 103 , 146 , 189 , 232 , 275 , 318 , 361 , 404 , 447 , 490 , 533 , 576 , 619 , 662 , 705 , 748 , 791 ( mod 817 ) .

(g)
Here gcd ( 49 , 999 ) = 1 . 49 x 5000 ( mod 999 ) 49 x 5 ( mod 999 ) x 367 × 5 ( mod 999 ) x 836 ( mod 999 ) .
User profile picture
2024-08-18 16:09
Comments