Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.3.14 (Solve $x^3 + 2x - 3 \equiv 0 \pmod{45}$)

Exercise 2.3.14 (Solve $x^3 + 2x - 3 \equiv 0 \pmod{45}$)

Solve the congruences

x 3 + 2 x 3 0 ( mod 9 ) ; x 3 + 2 x 3 0 ( mod 5 ) ; x 3 + 2 x 3 0 ( mod 45 ) .

Answers

Proof. In [ x ] ,

x 3 + 2 x 3 = ( x 1 ) ( x 2 + x + 3 ) .

a)
This shows that x 3 + 2 x 3 0 ( mod 9 ) is equivalent to 9 x 1 (1) or  9 x 2 + x + 3 (2) or  ( 3 x 1 , 3 x 2 + x + 3 ) (3)

(3) has no solution, because 3 x 1 and 3 x 2 + x + 3 imply x 1 ( mod 3 ) , 0 x 2 + x + 3 2 ( mod 3 ) , which gives the contradiction 0 2 ( mod 3 ) .

Now we solve (2).

x 2 + x + 3 0 ( mod 9 ) ( x + 5 ) 2 22 0 ( mod 9 ) ( x + 5 ) 2 4 0 ( mod 9 ) ( x 6 ) ( x 2 ) 0 ( mod 9 ) .

It is impossible that 3 x 6 and 3 x 2 simultaneously, otherwise 0 x 2 ( mod 3 ) . Therefore the last equation is equivalent to x 2 or x 6 ( mod 9 ) . So we obtain

x 3 + 2 x 3 0 ( mod 9 ) x 1 , 2 , 6 ( mod 9 ) .

b)
Since 5 is prime, x 3 + 2 x 3 0 ( mod 5 ) ( x 1 ) ( x 2 + x + 3 ) 0 ( mod 5 ) x 1 ( mod 5 )  or  x 2 + x + 3 0 ( mod 5 ) x 1 ( mod 5 )  or  ( x 3 ) ( x 1 ) 0 ( mod 5 ) x 1 ( mod 5 )  or  x 3 ( mod 5 ) .

(In 𝔽 5 [ x ] , x 3 + 2 x 3 = ( x 1 ) 2 ( x 3 ) .)

c)
Combining part (a) and (b), we obtain x 3 + 2 x 3 0 ( mod 45 ) x 3 + 2 x 3 0 ( mod 5 )  and  x 3 + 2 x 3 0 ( mod 9 ) x 1 , 3 ( mod 5 )  and  x 1 , 2 , 6 ( mod 5 ) { x 1 ( mod 5 ) x 1 ( mod 9 )  or  { x 1 ( mod 5 ) x 2 ( mod 9 )  or  { x 1 ( mod 5 ) x 6 ( mod 9 )  or  { x 3 ( mod 5 ) x 1 ( mod 9 )  or  { x 3 ( mod 5 ) x 2 ( mod 9 )  or  { x 3 ( mod 5 ) x 6 ( mod 9 ) x 1 , 11 , 6 , 28 , 38 , 33 ( mod 45 ) .

The solutions of x 3 + 2 x 3 0 ( mod 45 ) are x 1 , 6 , 11 , 28 , 33 , 38 ( mod 45 ) .

User profile picture
2024-08-12 08:22
Comments