Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.3.15 (Solve $x^3 + 4x + 8 \equiv 0 \pmod{15}$)

Exercise 2.3.15 (Solve $x^3 + 4x + 8 \equiv 0 \pmod{15}$)

Solve the congruence x 3 + 4 x + 8 0 ( mod 15 ) .

Answers

Proof. Let f ( x ) = x 3 + 4 x + 8 . Reducing modulo 5 , we obtain

f ( 2 ) 2 , f ( 1 ) 3 , f ( 0 ) 3 , f ( 1 ) 3 , f ( 2 ) 4 ( mod 5 ) .

Since { 2 , 1 , 0 , 1 , 2 } is a complete residue system modulo 5 , the congruence f ( x ) 0 ( mod 5 ) has no solution in .

A fortiori, the congruence f ( x ) 0 ( mod 15 ) has no solution in . □

Check with Sage:

sage: R.<x> = GF(5)[]
sage:  f = x^3 + 4*x + 8
sage: f.is_irreducible()
True

A fortiori, x 3 + 4 x + 8 has no solution in 𝔽 5 = GF ( 5 ) .

User profile picture
2024-08-12 17:37
Comments