Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.3.16 (Solve $x^3 -9x^2 + 23 x - 15 \equiv 0 \pmod {503}$)

Exercise 2.3.16 (Solve $x^3 -9x^2 + 23 x - 15 \equiv 0 \pmod {503}$)

Solve the congruence x 3 9 x 2 + 23 x 15 0 ( mod 503 ) by observing that 503 is a prime and that the polynomial factors into ( x 1 ) ( x 3 ) ( x 5 ) .

Answers

Proof. All is said in the sentence.

( x 1 ) ( x 3 ) ( x 5 ) = x 3 σ 1 x 2 + σ 2 x σ 3 = x 3 9 x 2 + 23 x 15 .

Since 503 is prime, the congruence x 3 9 x 2 + 23 x 15 0 ( mod 503 ) is equivalent to

x 1  or  x 3  or  x 5 ( mod 503 ) .

With Sage:

sage:  p = 503
sage: p.is_prime()
True
sage: R.<x> = GF(p)[]
sage: p = x^3 - 9*x^2 + 23*x - 15
sage: p.factor()
(x + 498) * (x + 500) * (x + 502)
sage: p == (x-1)*(x-3)*(x-5)
True

User profile picture
2024-08-12 18:54
Comments