Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.3.17 (Solve $x^3 - 9x^2 + 23x - 15 \equiv 0 \pmod{143}$)

Exercise 2.3.17 (Solve $x^3 - 9x^2 + 23x - 15 \equiv 0 \pmod{143}$)

Solve the congruence x 3 9 x 2 + 23 x 15 0 ( mod 143 ) .

Answers

Proof. Watch out! 143 is not a prime: 143 = 11 × 13 .

Reducing modulo 11 , we obtain, using the factorization given in Problem 16,

x 3 9 x 2 + 23 x 15 0 ( mod 11 ) ( x 1 ) ( x 3 ) ( x 5 ) 0 ( mod 11 ) x 1 , 3 , 5 ( mod 11 ) .

Modulo 13,

x 3 9 x 2 + 23 x 15 0 ( mod 13 ) ( x 1 ) ( x 3 ) ( x 5 ) 0 ( mod 13 ) x 1 , 3 , 5 ( mod 13 ) .

Therefore

x 3 9 x 2 + 23 x 15 0 ( mod 143 ) x 3 9 x 2 + 23 x 15 0 ( mod 11 )  and  x 3 9 x 2 + 23 x 15 0 ( mod 13 ) x 1 , 3 , 5 ( mod 11 )  and  x 1 , 3 , 5 ( mod 13 ) { x 1 ( mod 11 ) x 1 ( mod 13 )  or  { x 1 ( mod 11 ) x 3 ( mod 13 )  or  { x 1 ( mod 11 ) x 5 ( mod 13 )  or  { x 3 ( mod 11 ) x 1 ( mod 13 )  or  { x 3 ( mod 11 ) x 3 ( mod 13 )  or  { x 3 ( mod 11 ) x 5 ( mod 13 )  or  { x 5 ( mod 11 ) x 1 ( mod 13 )  or  { x 5 ( mod 11 ) x 3 ( mod 13 )  or  { x 5 ( mod 11 ) x 5 ( mod 13 ) x 1 , 133 , 122 , 14 , 3 , 135 , 27 , 16 , 5 ( mod 143 ) .

So the solutions of the congruence x 3 9 x 2 + 23 x 15 0 ( mod 143 ) are

x 1 , 3 , 5 , 14 , 16 , 27 , 122 , 133 , 135 ( mod 143 ) .

User profile picture
2024-08-12 19:31
Comments