Exercise 2.3.2 (First examples, part 2)

Find all integers that satisfy simultaneously: x 2 ( mod 3 ) , x 3 ( mod 5 ) , x 5 ( mod 2 ) .

Answers

Proof. Write ( a 1 , a 2 , a 3 ) = ( 2 , 3 , 5 ) , ( m 1 , m 2 , m 3 ) = ( 3 , 5 , 2 ) , and m = m 1 m 2 m 3 = 30 . Here m 1 , m 2 , m 3 are relatively prime by pairs.

Consider, as in the proof of the Chines remainder theorem

( m 1 , m 2 , m 3 ) = ( m m 1 , m m 2 , m m 3 ) = ( 10 , 6 , 15 ) .

Since m 1 = 10 1 ( mod 3 ) , m 2 = 6 1 ( mod 5 ) , m 3 = 15 1 ( mod 2 ) , the inverses b i of m i modulo m i are

( b 1 , b 2 , b 3 ) = ( 1 , 1 , 1 ) ,

Therefore a particular solution is given by

x 0 = m 1 b 1 a 1 + m 2 b 2 a 2 + m 3 b 3 a 3 = 10 2 + 6 3 + 15 5 = 113 .

A smaller one is x 1 = 113 3 30 = 23 .

(check: 23 2 ( mod 3 ) , 23 3 ( mod 5 ) , 23 5 ( mod 2 ) .)

Then

x 2 ( mod 3 ) , x 3 ( mod 5 ) , x 5 ( mod 2 ) x 23 ( mod 3 ) , x 23 ( mod 5 ) , x 23 ( mod 2 ) 3 x 23 , 5 x 23 , 2 x 23 30 x 23 k , x = 23 + 30 k .

The integers that satisfy simultaneously: x 2 ( mod 3 ) , x 3 ( mod 5 ) , x 5 ( mod 2 ) are the integers 23 + 30 k , where k is any integer. □

User profile picture
2024-08-11 09:53
Comments