Exercise 2.3.32 (Solve $\phi(x) = 24$.)

Find all solutions x of ϕ ( x ) = 24 .

Answers

Proof. Let x be a solution of ϕ ( x ) = 24 , and

x = p 1 a 1 p k a k

its decomposition in prime numbers. Then

24 = i = 1 k p i a i 1 ( p i 1 ) ,

therefore p i 1 24 for every index i .

The divisors of 24 are

1 , 2 , 3 , 4 , 6 , 8 , 12 , 24 .

Since p i 1 is a divisor of 24 , and p i is prime,

p i { 2 , 3 , 5 , 7 , 13 } .

Moreover, if a i 2 , then p i and p i 1 are divisors or 24 , thus p i = 2 or p i = 3 .

If p i = 3 , then 3 a i 1 24 = 2 3 3 , so a i 1 1 , a i 2 .

If p i = 2 , then 2 a i 1 24 = 2 3 3 , so a i 1 3 , a i 4 . Note that a i = 4 is impossible, because there is at least another odd factor q , which gives another even factor q 1 of ϕ ( x ) = 24 .

To summarize,

x = 2 a 3 b 5 c 7 d 1 3 e , 0 a 3 , 0 b 2 , 0 c 1 , 0 d 1 , 0 e 1 .

x is a divisor of 32760 = 2 3 3 2 5 7 13 . This gives 96 numbers to check.

With Sage:

l = []
for a in range(4):
    for b in range(3):
        for c in range(2):
            for d in range(2):
                for e in range(2):
                    n = 2^a * 3^b * 5^c * 7^d * 13^e
                    if euler_phi(n) == 24:
                        l.append(n)
print(l)
              [35, 39, 45, 70, 78, 90, 52, 84, 56, 72]

There are 10 solutions of ϕ ( x ) = 24 , which are

35 = 5 7 , 39 = 3 13 , 45 = 3 2 5 , 52 = 2 2 13 , 56 = 2 3 7 , 70 = 2 5 7 , 72 = 2 3 3 2 , 78 = 2 3 13 , 84 = 2 2 3 7 , 90 = 2 3 2 5 .

Note: There is a more challenging problem, given in projecteuler (https://projecteuler.net).

Problem 248.

The first number n for which ϕ ( n ) = 13 ! is 6227180929 .

Find the 15000 0 th such number.

User profile picture
2024-08-15 14:16
Comments