Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.4.9 (If $x^2\equiv 1 \pmod m$, but $x \not \equiv \pm 1 \pmod m$, then $1<(x-1,m) < m$)

Exercise 2.4.9 (If $x^2\equiv 1 \pmod m$, but $x \not \equiv \pm 1 \pmod m$, then $1<(x-1,m) < m$)

Show that if x 2 1 ( mod m ) , but x ± 1 ( mod m ) , then 1 < ( x 1 , m ) < m , and that 1 < ( x + 1 , m ) < m .

Answers

Proof. Suppose that x 2 1 ( mod m ) , but x ± 1 ( mod m ) .

If m ( x 1 ) = m , then m x 1 , this is contrary to the hypothesis. Moreover, m ( x 1 ) m , so

m ( x 1 ) < m ,

and similarly m ( x + 1 ) < m .

Since x 2 1 ( mod m ) , m ( x 1 ) ( x + 1 ) . If m ( x 1 ) = 1 , then m x + 1 , and this is contrary to the hypothesis. Therefore

1 < m ( x 1 ) ,

and similarly 1 < m ( x + 1 ) .

So, if x 2 1 ( mod m ) , but x ± 1 ( mod m ) , then 1 < ( x 1 , m ) < m , and that 1 < ( x + 1 , m ) < m . □

User profile picture
2024-08-22 09:11
Comments