Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.5.3 (If $d\mid m$, then $\phi(d) \mid \phi(m)$)

Exercise 2.5.3 (If $d\mid m$, then $\phi(d) \mid \phi(m)$)

Show that if d m then ϕ ( d ) ϕ ( m ) .

Answers

Proof. If d = 1 , ϕ ( d ) = 1 ϕ ( m ) . If d > 1 , and d m , we can write the decompositions of d , m in prime factors:

m = i I p i a i , a i > 0 , d = i J p i b i , 0 < b i a i ,

where J I .

Then

ϕ ( m ) = i I p i a i 1 ( p i 1 ) , ϕ ( d ) = j J p i b i 1 ( p i 1 ) .

For every i J , b i a i , thus p i b i 1 p i a i 1 , so p i b i 1 ( p i 1 ) p i a i 1 ( p i 1 ) . Since J I , ϕ ( d ) ϕ ( n ) . □

User profile picture
2024-08-26 14:46
Comments