Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.6.1 (Solve $x^2+x+7 \equiv 0 $ modulo $3^3$ and modulo $3^4$)

Exercise 2.6.1 (Solve $x^2+x+7 \equiv 0 $ modulo $3^3$ and modulo $3^4$)

Solve the congruence x 2 + x + 7 0 ( mod 27 ) by using the method of completing the square from elementary algebra, thus 4 x 2 + 4 x + 28 = ( 2 x + 1 ) 2 + 27 . Solve this congruence ( mod 81 ) by the same method.

Answers

Notation: ν p ( a ) = k means p k | | a , that is p k a and p k + 1 a .

Proof.

a)
Since 4 27 = 1 , x 2 + x + 7 0 ( mod 27 ) 4 x 2 + 4 x + 28 0 ( mod 27 ) ( 2 x + 1 ) 2 + 27 0 ( mod 27 ) ( 2 x + 1 ) 2 0 ( mod 27 ) .

Write a = 2 x + 1 . If a 2 0 ( mod 3 3 ) , then 2 ν 3 ( a ) 3 , so ν 3 ( a ) 3 2 . Since ν 3 ( a ) is an integer, ν 3 ( a ) 2 , thus a 0 ( mod 3 2 ) . Conversely, if a 0 ( mod 3 2 ) , then a 2 0 ( mod 3 4 ) , a fortiori a 2 0 ( mod 3 3 ) . This shows that

a 2 0 ( mod 3 3 ) a 0 ( mod 3 2 ) . (1)

Therefore

x 2 + x + 7 0 ( mod 27 ) ( 2 x + 1 ) 2 0 ( mod 27 ) 2 x + 1 0 ( mod 9 ) x 4 ( mod 9 ) x 4 , 13 , 22 ( mod 27 ) .

We find the same solutions than in Example 12:

x 2 + x + 7 0 ( mod 27 ) x 4 , 13 , 22 ( mod 27 ) .

b)
Similarly, x 2 + x + 7 0 ( mod 81 ) 4 x 2 + 4 x + 28 0 ( mod 81 ) ( 2 x + 1 ) 2 + 27 0 ( mod 81 ) .

Then ( 2 x + 1 ) 2 0 ( mod 27 ) . By (1), 2 x + 1 0 ( mod 3 2 ) . If we divide all terms by 27 = 3 3 , we obtain

x 2 + x + 7 0 ( mod 81 ) 3 ( 2 x + 1 3 2 ) 2 + 1 0 ( mod 3 ) 1 0 ( mod 3 ) .

This contradiction shows that the congruence x 2 + x + 7 0 ( mod 81 ) has no solution.

User profile picture
2024-08-30 08:21
Comments