Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.6.3 (Solve $x^3 + x + 57 \equiv 0 \pmod{5^3}$)

Exercise 2.6.3 (Solve $x^3 + x + 57 \equiv 0 \pmod{5^3}$)

Solve x 3 + x + 57 0 ( mod 5 3 ) .

Answers

Proof. Here x 1 = 4 1 ( mod 5 ) is the only solution of x 3 + x + 57 0 ( mod 5 ) .

Here f ( x ) = 3 x 2 + 1 , and f ( 1 ) = 4 0 ( mod 5 ) , so 1 is a nonsingular root. So 4 lifts to a unique root modulo p j for all j . Since f ( 4 ) = 125 = 5 3 0 ( mod 125 ) , 4 is the unique solution modulo 125 .

x 3 + x + 57 0 ( mod 5 3 ) x 4 ( mod 5 3 ) .

User profile picture
2024-08-30 09:08
Comments