Exercise 2.6.4 (Solve $x^2+5x + 24 \equiv 0 \pmod {36}$)

Solve x 2 + 5 x + 24 0 ( mod 36 ) .

Answers

Proof. Since 36 = 2 2 × 3 2 and 2 2 3 2 = 1 ,

x 2 + 5 x + 24 0 ( mod 36 ) { x 2 + 5 x + 24 0 ( mod 2 2 ) , x 2 + 5 x + 24 0 ( mod 3 2 ) .

We solve separately these two congruences.

x 2 + 5 x + 24 0 ( mod 4 ) x ( x + 1 ) 0 ( mod 4 ) x 0 ( mod 4 )  or  x 3 ( mod 4 ) ,

because 2 x and 2 x + 1 are incompatibel. The second congruence gives

x 2 + 5 x + 24 0 ( mod 9 ) x 2 4 x 3 0 ( mod 9 ) ( x 2 ) 2 7 0 ( mod 9 ) ( x 2 ) 2 4 2 0 ( mod 9 ) ( x 6 ) ( x + 2 ) 0 ( mod 9 ) x 6 ( mod 9 )  or  x 2 7 ( mod 9 ) ,

because 3 x 6 and 3 x + 2 are incompatible.

Therefore

x 2 + 5 x + 24 0 ( mod 36 ) { x 0 ( mod 4 )  or  x 3 ( mod 4 ) x 6 ( mod 9 )  or  x 7 ( mod 9 ) { x 0 ( mod 4 ) x 6 ( mod 9 )  or  { x 0 ( mod 4 ) x 7 ( mod 9 )  or  { x 3 ( mod 4 ) x 6 ( mod 9 )  or  { x 3 ( mod 4 ) x 7 ( mod 9 ) x 24 , 16 , 15 , 7 ( mod 36 ) .

The solutions of x 2 + 5 x + 24 0 ( mod 36 ) are x 7 , 15 , 16 , 24 ( mod 36 ) . □

User profile picture
2024-08-30 09:46
Comments