Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.6.7 (Solve $x^3 + x^2 - 5 \equiv 0 \pmod{7^3}$)

Exercise 2.6.7 (Solve $x^3 + x^2 - 5 \equiv 0 \pmod{7^3}$)

Solve x 3 + x 2 5 0 ( mod 7 3 ) .

Answers

Proof. The equation x 3 + x 2 5 0 ( mod 7 ) has a unique solution 2 . Moreover f ( x ) = 3 x 2 + 2 x , so f ( 2 ) = 16 2 0 ( mod 7 ) , so 2 is a nonsingular root. Therefore a = a 1 = 2 lifts to a unique solution a 2 modulo 7 2 , and a unique solution a 3 modulo 7 3 , where

a 2 = a 1 f ( a 1 ) f ( a ) ¯ = 2 7 × 4 = 26 23 ( mod 7 2 ) , a 3 = a 2 f ( a 2 ) f ( a ) ¯ = 23 12691 × 4 = 23 7 3 37 4 23 ( mod 7 3 ) .

This gives

x 3 + x 2 5 0 ( mod 7 3 ) x 23 ( mod 7 3 ) .

User profile picture
2024-08-30 10:51
Comments