Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.7.12* ($\binom{mp-1}{p-1} \equiv 1 \pmod{p^3}$, if $p\geq 5$)

Exercise 2.7.12* ($\binom{mp-1}{p-1} \equiv 1 \pmod{p^3}$, if $p\geq 5$)

Show that if p 5 and m is a positive integer then ( mp 1 p 1 ) 1 ( mod p 3 ) .

Answers

I found the idea by considering first the particular case m = 2 , p = 5 .

Proof. By (2.9),

f ( x ) = ( x 1 ) ( x 2 ) ( x p + 1 ) (1) = x p 1 σ 1 x p 2 + + σ p 3 x 2 σ p 2 x + σ p 1 . (2)

Then

( mp 1 p 1 ) 1 = ( mp 1 p 1 ) ( p 1 p 1 ) = k = 1 m 1 [ ( ( k + 1 ) p 1 p 1 ) ( kp 1 p 1 ) ] ,

where, using (1),

( ( k + 1 ) p 1 p 1 ) ( kp 1 p 1 ) = 1 ( p 1 ) ! { [ ( k + 1 ) p 1 ] ! ( kp ) ! ( kp 1 ) ! [ ( k 1 ) p ] ! } = 1 ( p 1 ) ! { [ ( k + 1 ) p 1 ] [ ( k + 1 ) p 2 ] [ ( k + 1 ) p ( p 1 ) ] ( kp 1 ) ( kp 2 ) [ kp ( p 1 ) ] } = 1 ( p 1 ) ! [ f ( ( k + 1 ) p ) f ( kp ) ] .

Therefore

( mp 1 p 1 ) 1 = 1 ( p 1 ) ! k = 1 m 1 [ f ( ( k + 1 ) p ) f ( kp ) ] (3) = 1 ( p 1 ) ! ( f ( mp ) f ( p ) ) , (4)

where f ( p ) = ( p 1 ) ! , and by (2),

f ( mp ) = ( mp ) p 1 σ 1 ( mp ) p 1 + + σ p 3 ( mp ) 2 σ p 2 ( mp ) + σ p 1 σ p 3 ( mp ) 2 σ p 2 ( mp ) + σ p 1 ( mod p 3 ) .

Here σ p 1 = ( p 1 ) ! , and σ p 3 0 ( mod p ) (see p.96). Since p 5 , the Wolstenholme’s congruence shows that σ p 2 0 ( mod p 2 ) . Hence, for all m 1 ,

f ( mp ) ( p 1 ) ! = f ( p ) ( mod p 3 ) . (5)

Therefore, using (4),

p 3 f ( mp ) f ( p ) = ( p 1 ) ! [ ( mp 1 p 1 ) 1 ] .

Since p 3 ( p 1 ) ! = 1 , p 3 ( mp 1 p 1 ) 1 . This shows that

( mp 1 p 1 ) 1 ( mod p 3 ) , ( if  p 5 ) .

User profile picture
2024-09-05 08:48
Comments