Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.7.1 (Reduce congruences to simpler equivalent congruences)

Exercise 2.7.1 (Reduce congruences to simpler equivalent congruences)

Reduce the following congruences to equivalent congruences of degree 6 :

(a)
x 11 + x 8 + 5 0 ( mod 7 ) ;
(b)
x 20 + x 13 + x 7 + x 2 ( mod 7 ) ;
(c)
x 15 x 10 + 4 x 3 0 ( mod 7 ) .

Answers

Proof.

(a)
The Euclidean division by x 7 x gives modulo 7 x 11 + x 8 + 5 ( x 7 x ) ( x 4 + x ) + x 5 + x 2 + 5 ( mod 7 ) .

Therefore, for all integers x ,

x 11 + x 8 + 5 0 ( mod 7 ) x 5 + x 2 + 5 0 ( mod 7 ) .

With Sage

     F7 = GF(7)
     R.<x> = PolynomialRing(F7)
     p = x^11 + x^8 + 5
     s = x^7 - x
     q,r = p.quo_rem(s); q,r

( x 4 + x , x 5 + x 2 + 5 )

(b)
Similarly, x 20 + x 13 + x 7 + x 2 ( x 13 + x 7 + x 6 + x + 2 ) ( x 7 x ) + x 2 + 3 x + 5 ( mod 7 ) .

Therefore

x 20 + x 13 + x 7 + x 2 ( mod 7 ) x 2 + 3 x + 5 0 ( mod 7 ) .

(c)
Finally, x 15 x 10 + 4 x 3 ( x 8 + 6 x 3 + x 2 ) ( x 7 x ) + 6 x 4 + x 3 + 4 x + 4 ( mod 7 ) .

So

x 15 x 10 + 4 x 3 0 ( mod 7 ) 6 x 4 + x 3 + 4 x + 4 0 ( mod 7 ) .

User profile picture
2024-09-01 20:21
Comments