Exercise 2.7.9 (Wolstenholme's congruence for $p=5$.)

For p = 5 , compute the values of the numbers σ 1 , σ 2 , σ 3 , σ 4 in (2.7).

Answers

Proof. By (2.7) for p = 5

( x 1 ) ( x 2 ) ( x 3 ) ( x 4 ) = x 4 σ 1 x 3 + σ 2 x 2 σ 3 x + σ 4 .

Expanding the left member, we obtain

x 4 10 x 3 + 35 x 2 50 x + 24 = x 4 σ 1 x 3 + σ 2 x 2 σ 3 x + σ 4 ,

so

σ 1 = 10 , σ 2 = 35 , σ 3 = 50 , σ 4 = 24 .

Note that σ 3 0 ( mod 5 2 ) : this is the Wolstenholme’congruence for p = 5 . □

User profile picture
2024-09-04 11:25
Comments