Exercise 2.8.10 (Solutions of congruences of Problem 8)

Show that the power of 3 ( mod 17 ) are 3 , 9 , 10 , 13 , 5 , 15 , 11 , 16 , 14 , 8 , 7 , 4 , 12 , 2 , 6 , 1 . Use this information to find the solutions of the congruences in Problem 8.

Answers

Proof. This array gives the powers of the primitive root 3 modulo 17 :

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3 k mod 17 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

With Sage:

sage: a = Mod(3, 17)
sage: [a^k for k in range(1,17)]
[3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1]

(a)
Write x ¯ = g y where g = 3 ¯ 17 , and 0 y 15 . We read in the array that 16 3 8 ( mod 17 ) . Then (as in the solution of Problem 8) x 12 16 ( mod 17 ) g 12 y = g 8 12 y 8 ( mod 16 ) 3 y 2 ( mod 4 ) y 2 ( mod 4 ) y { 2 , 6 , 10 , 14 } ( 0 y 15 ) x { 2 ¯ , 8 ¯ , 9 ¯ , 17 ¯ } x 2 , 8 , 9 , 15 ( mod 17 ) .
(b)
Similarly, with the same notations, x 48 9 ( mod 17 ) g 48 y = g 2 48 y 2 ( mod 16 ) .

This last congruence has no solution, because 16 48 , but 16 2 .

(c)
Here the array gives 13 3 4 ( mod 17 ) . Thus x 20 13 g 20 y = g 4 20 y 4 ( mod 16 ) 5 y 1 ( mod 4 ) y 1 ( mod 4 ) y { 1 , 5 , 9 , 13 } ( 0 y 15 ) x 3 , 5 , 14 , 12 ( mod 17 ) .
(d)
Since 9 = 3 2 , x 11 9 ( mod 17 ) g 11 y = g 2 11 y 2 ( mod 16 ) y 6 ( mod 16 ) ( using  3 × 11 2 × 16 = 1 ) y = 6 ( 0 y 15 ) x 3 6 15 ( mod 17 ) .
User profile picture
2024-09-12 08:18
Comments