Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.8.11 (Squares of $(\mathbb{Z}/ 17\mathbb{Z})^*$)

Exercise 2.8.11 (Squares of $(\mathbb{Z}/ 17\mathbb{Z})^*$)

Using the data in the preceding problem, decide which of the congruences x 2 1 , x 2 2 , x 2 3 , , x 2 16 ( mod 17 ) , have solutions.

Answers

Proof. As in problem 8, we use the generator g = 3 ¯ of ( 17 ) .

Consider the congruence x 2 a ( mod 17 ) , where 1 a 16 .

Since x ¯ and a ¯ are in ( 17 ) , we can write

x ¯ = g y , 0 y 15 , a ¯ = g b , 0 b 15 .

Then

x 2 a ( mod 17 ) x ¯ 2 = a ¯ g 2 y = g b g 2 y b = 1 ¯ 16 2 y b ( the order of  g  is  16 ) 2 y b ( mod 16 ) .

The last congruence 2 y b ( mod 16 ) shows that b is even.

Conversely, if b is even, then b = 2 c , where 0 c 7 . Then

x 2 a ( mod 17 ) 2 y 2 c ( mod 16 ) y c ( mod 8 ) y = c  or  y = 8 + c ( since  0 y 15 ) x ¯ = g c  or  x ¯ = g c ( since  g 8 = 1 ¯ ) x 3 c  or  x 3 c ( mod 17 ) .

To summarize, the congruence x 2 a ( mod 17 ) has a solution if and only if a = 3 2 c , where 0 c 7 .

x , x 2 a ( mod 17 ) a 3 0 , 3 2 , 3 4 , 3 6 , 3 8 , 3 10 , 3 12 , 3 14 ( mod 17 ) a { 1 , 9 , 13 , 15 , 16 , 8 , 4 , 2 }

(See the data of Problem 10.) □

User profile picture
2024-09-12 08:58
Comments