Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 2.8.20 (The only element $a=2 + 101k$ which is not a primitive root modulo $101^2$)

Exercise 2.8.20 (The only element $a=2 + 101k$ which is not a primitive root modulo $101^2$)

Of the 101 integers in a complete residue system ( mod 10 1 2 ) that are 2 ( mod 101 ) , which one is not a primitive root ( mod 10 1 2 )

Answers

Proof. The integer p = 101 is prime. Note that 2 is a primitive root modulo p , since

2 100 1 ( mod 101 ) , 2 50 1 1 ( mod 101 ) , 2 20 95 1 ( mod 101 ) .

(See the Remark p. 100, or Problem 24.)

We search k such that the order of a = 2 + 101 k modulo 10 1 2 is not ϕ ( 10 1 2 ) = 101 × 100 . By the proof of Theorem 2.39 (p. 102), such an integer a has order p 1 = 100 modulo 10 1 2 , so that a is a root of the congruence

f ( x ) = x 100 1 0 ( mod 10 1 2 ) .

Then, as in the Hensel’s Lemma,

f ( a ) 0 ( mod p 2 ) ( 2 + 101 k ) 100 1 ( mod 10 1 2 ) 2 100 + ( 100 1 ) 2 99 101 k 1 ( mod 10 1 2 ) 2 100 1 + 2 99 100 101 k 0 ( mod 10 1 2 ) 2 99 k 2 100 1 101 ( mod 101 ) ( since  100 1 ( mod 101 ) k 2 2 100 1 101 ( mod 101 ) ( since  2 100 1 ( mod 101 ) ) .

To avoid to use the big number 2 100 , we note that

2 100 9293 ( mod 10 1 2 ) ,

therefore

2 100 1 101 92 ( mod 101 ) ,

and 2 × 92 83 ( mod 101 ) , so

( 2 + 101 k ) 100 1 ( mod 10 1 2 ) k 83 ( mod 101 ) .

In a complete residue system ( mod 10 1 2 ) that are congruent to 2 modulo 101 , the only one which is not a primitive root is the only integer a in this system such that

a 8385 = 2 + 101 × 83 ( mod 101 ) .

Check:

sage: for k in range(101):
....:     a = Mod(2 + 101 * k, 101^2)
....:     if a.multiplicative_order() != 10100:
....:         print(a)
....:
8385

User profile picture
2024-09-14 08:56
Comments