Exercise 2.8.2 (Primitive root modulo 23)

Find a primitive root of 23 .

Answers

Proof. 2 11 1 3 11 ( mod 223 ) so 2 , 3 are not primitive roots modulo 23 .

5 22 1 ( mod 23 ) (Fermat’s Theorem). For p = 23 , p 1 = 2 × 11 , and

5 ( p 1 ) 2 = 5 11 1 1 ( mod 23 ) , 5 ( p 1 ) 11 = 5 2 = 2 1 ( mod 23 ) .

This shows that the order of 5 is p 1 = 22 , thus

5 is a primitive root modulo 23 . □

Note: The set of primitive roots modulo 23 is

A = { 5 , 7 , 10 , 11 , 14 , 15 , 17 , 19 , 20 , 21 } .

Here | A | = ϕ ( 22 ) = 10 .

User profile picture
2024-09-11 09:18
Comments