Exercise 2.9.1 (Second degree equation modulo $p$)

Reduce the following congruences to the form x 2 a ( mod p ) :

( a ) 4 x 2 + 2 x + 1 0 ( mod 5 ) ; ( b ) 3 x 2 x + 5 0 ( mod 7 ) ; ( c ) 2 x 2 + 7 x 10 0 ( mod 11 ) ; ( d ) x 2 + x + 1 0 ( mod 13 )

Answers

Proof.

(a)
4 x 2 + 2 x + 1 x 2 + 2 x + 1 ( x 2 2 x 1 ) [ ( x 1 ) 2 2 ] ( mod 5 ) .

Therefore, for all x ,

4 x 2 + 2 x + 1 0 ( mod 5 ) ( x 1 ) 2 2 ( mod 5 ) .

Since 2 is not a square modulo 5, this equation has no solution.

(b)
3 x 2 x + 5 3 ( x 2 + 2 x + 4 ) 3 [ ( x + 1 ) 2 + 3 ] ( mod 7 )

Therefore, for all x ,

3 x 2 x + 5 0 ( mod 7 ) ( x + 1 ) 2 4 ( mod 7 ) .

Thus the solutions are 1 , 4 modulo 7 .

(c)
2 x 2 + 7 x 10 2 ( x 2 2 x 5 ) 2 [ ( x 1 ) 2 6 ] ( mod 11 ) .

Therefore, for all x ,

2 x 2 + 7 x 10 0 ( mod 11 ) ( x 1 ) 2 6 ( mod 11 ) .

Since 6 is not a square modulo 11 , this equation has no solution.

(d)
x 2 + x + 1 ( x + 7 ) 2 9 ( mod 13 )

Therefore, for all x ,

x 2 + x + 1 0 ( mod 13 ) ( x + 7 ) 2 9 ( mod 13 ) .

Thus the solutions are 3 , 9 modulo 13 .

User profile picture
2024-05-18 08:59
Comments