Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.1.5 (Solve $x^2 \equiv a \pmod {11}$ and $x^2 \equiv a \pmod {11^2}$)

Exercise 3.1.5 (Solve $x^2 \equiv a \pmod {11}$ and $x^2 \equiv a \pmod {11^2}$)

Prove that the quadratic residues of 11 are 1 , 3 , 4 , 5 , 9 , and list all solutions of each of the then congruences x 2 a ( mod 11 ) and x 2 a ( mod 1 1 2 ) where a = 1 , 3 , 4 , 5 , 9 .

Answers

Proof. With p = 11 ,

a 1 2 3 4 5
a 2 mod 11 1 4 9 5 3

Since a 2 ( p a ) 2 ( mod p ) , it is sufficient to list all squares a 2 mod p for a [ [ 1 , ( p 1 ) 2 ] ] . So the list of all quadratic residues of 11 are

1 , 3 , 4 , 5 , 9 .

The results are given in this array:

a x 2 a ( mod 11 ) x 2 a ( mod 11 )
1 1, 10 1, 120
3 6, 6 27, 94
4 2, 9 2, 119
5 4, 7 48, 73
9 3, 8 3, 118

To give an example, with a = 5 , x 2 5 ( mod 11 ) has solutions x 4 , 7 ( mod 11 ) by the first array.

To solve x 2 5 ( mod 1 1 2 ) , we write x = 4 + 11 k , where k is an integer (or x = 7 + 11 k ). In the first case, 16 + 8 11 k 5 ( mod 1 1 2 ) , thus 8 k 1 ( mod 11 ) , so k 4 ( mod 11 ) , k = 4 + 11 λ , and x 4 + 11 ( 4 + 11 λ ) ( mod 1 1 2 ) , thus x 48 ( mod 1 1 2 ) . Similarly, in the second case, x 73 ( mod 1 1 2 ) . □

User profile picture
2024-10-16 10:38
Comments