Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.1.6 (Minimum value of $|n^2 - 17x|$, where $x \in \mathbb{Z}$.)

Exercise 3.1.6 (Minimum value of $|n^2 - 17x|$, where $x \in \mathbb{Z}$.)

(a)
List the quadratic residues of each of the primes 7 , 13 , 17 , 29 , 37 .
(b)
For any positive integer n , define F ( n ) to be the minimum value of | n 2 17 x | , where x runs over all integers. Prove that F ( n ) is either 0 or a power of 2 .

Answers

Proof.

(a)
List of quadratic residues of each of the primes 7 , 13 , 17 , 29 , 37 : p = 7 : 1 , 3 , 2 ; p = 13 : ± 1 , ± 3 , ± 4 ; p = 17 : ± 1 , ± 2 , ± 4 , ± 8 ; p = 29 : ± 1 , ± 4 , ± 5 , ± 6 , ± 7 , ± 9 , ± 13 ; p = 37 : ± 1 , ± 3 , ± 4 , ± 7 , ± 9 , ± 10 , ± 11 , ± 12 , ± 16 .

At the exception of 7 , these primes p are of the form 4 k + 1 , thus 1 is a quadratic residue, thus if a is a quadratic residue modulo p , so is a .

     sage: def least_remainder(a,b):
     ....:     r = a % b
     ....:     if 2 * r > b:
     ....:         r = r - b
     ....:     return r
     ....:
     sage: p = 37
     sage:l = [least_remainder(n^2, p) for n in range(1 + (p-1) // 2)];
                  l.sort(); l
     [-16, -12, -11, -10, -9, -7, -4, -3, -1,
          0, 1, 3, 4, 7, 9, 10, 11, 12, 16]

(b)
Let n a fixed positive integer. The Euclidean division of n 2 by 17 give q , r such that n 2 = 17 q + r , 0 r < 17 .

Define q , r by

q = q + 1 , r = r 17 , if  r > 8 , q = q , r = r , if  r 8 .

Since n 2 = 17 ( q + 1 ) + ( r 17 ) , in both cases,

n 2 = 17 q + r , 8 r 8 .

(We call r the least remainder in the division of n 2 by 17 .)

We prove that

| r | = min { | n 2 17 x | , x } .

Indeed, let

A n = { | n 2 17 x | , x } = { y x , y = | n 2 17 x | } .

Then | r | = | n 2 17 q | A n . If y A n , where y | r | , then y = | n 2 17 x | for some integer x = q + h , h 0 . Then

y = | n 2 17 x | = | n 2 17 ( q + h ) | = | n 2 17 q 17 h | 17 | h | | n 2 17 q | 17 8 = 9 > | r | .

Define F ( n ) = min ( A n ) to be the minimum value of | n 2 17 x | , where x runs over all integers. We have proved that F ( n ) = | r | , where r is the least remainder of n 2 by 17 .

Since n 2 17 q = ± | r | = ± F ( n ) , ± F ( n ) n 2 ( mod 17 ) , so ± F ( n ) is zero, or a quadratic residue modulo 17 . Since 1 is a quadratic residue modulo 17 , F ( n ) is zero, or a quadratic residue modulo 17 , and 0 F ( n ) = | r | 8 . By part (a),

F ( n ) { 0 , 1 , 2 , 4 , 8 } .

This shows that F ( n ) is either 0 or a power of 2 .

User profile picture
2024-10-17 08:43
Comments