Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.2.10 (Primes for which $-2$ a quadratic residue)

Exercise 3.2.10 (Primes for which $-2$ a quadratic residue)

Of which primes is 2 a quadratic residue?

Answers

Proof. The number 2 is a residue modulo p if and only if ( 2 p ) = 1 , where

( 2 p ) = ( 1 p ) ( 2 p ) = ( 1 ) ( p 1 ) 2 ( 1 ) ( p 2 1 ) 8 .

Thus ( 2 p ) = 1 if and only if

( p 1 ( mod 4 )  and  p 1 , 7 ( mod 8 ) ) or ( p 3 ( mod 4 )  and  p 3 , 5 ( mod 8 ) ) .

which gives p 1 , 3 ( mod 8 ) .

( 2 p ) = 1 p 1 ( mod 8 )  or  p 3 ( mod 8 ) .

(The first such primes are 3 , 11 , 17 , 19 , 41 , 43 , 59 , 67 , 73 , 83 , 89 , 97 , 107 , 113 , 131 , 137 , ) □

User profile picture
2024-10-23 10:21
Comments