Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.2.16* (If $F_n = 2^{2^n}+1$ is prime, $3,5,7$ are primitive roots modulo $F_n$ ($n>1$))

Exercise 3.2.16* (If $F_n = 2^{2^n}+1$ is prime, $3,5,7$ are primitive roots modulo $F_n$ ($n>1$))

Show that if p = 2 2 n + 1 is prime then 3 is a primitive root ( mod p ) and that 5 and 7 are primitive roots provided that n > 1 .

Answers

Proof. Assume that p = 2 2 n + 1 is prime, where n is a positive integer ( 3 is not a primitive root of F 3 = 3 ). Since p = 2 2 2 n 1 + 1 = 4 2 n 1 + 1 = 4 N + 1 , where N = 2 n 1 1 , we may repeat the arguments of Problem 15 (see Problem 15 for more details):

( 3 p ) = ( p 3 ) = ( 4 N + 1 3 ) = ( 2 3 ) = 1 ,

therefore 3 ( p 1 ) 2 1 ( mod p ) , so 3 p 1 1 ( mod p ) . This gives

3 2 2 n 1 1 ( mod p ) , 3 2 2 n 1 ( mod p ) .

If d is the order of 3 modulo p , then d 2 2 n , but d 2 2 n 1 . Hence d = 2 2 n = p 1 . This shows that 3 is a primitive element modulo p = 2 2 n + 1 .

(Alternatively, we have proved by another way in Problem 3.1.21 that any quadratic nonresidue modulo a Fermat number is a primitive root.)

Suppose now that n > 1 . Using p 1 ( mod 4 ) , the law of quadratic reciprocity shows that

( 5 p ) = ( p 5 ) = ( 2 2 n + 1 5 ) = ( ( 2 4 ) 2 n 2 + 1 5 ) = ( 2 5 ) ( since  2 4 1 ( mod 5 ) ) = 1 .

Similarly,

( 7 p ) = ( p 7 )

Moreover, for every exponent k 2

2 2 k = 2 2 2 2 k 2 = 1 6 2 k 2 2 2 k 2 ( mod 7 ) .

By an obvious induction, we obain 2 2 n 2 2 n 2 j ( mod 7 ) for all j such that n 2 j 0 . Hence

2 2 n 2 2 0 ( mod 7 )  if  n  is even, 2 2 n 2 2 1 ( mod 7 )  if  n  is odd.

Therefore p 3 ( mod 7 ) or p 5 ( mod 7 ) . Since the quadratic residues modul 7 are 1 , 2 , 4 , this shows that p is a quadratic non residue modulo 7 . Hence

( 7 p ) = ( p 7 ) = 1 .

Since any quadratic nonresidue modulo a Fermat number is a primitive root, (Problem 3.1.21), 3 , 5 and 7 are primitive roots modulo p . □

Verification with Sage that F n 3 , 5 ( mod 7 ) :

sage: def F(n):
....:     return 2^(2^n) + 1
....:
sage: [F(n) % 7 for n in range(2,15)]
[3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3]

sage: [F(n) % 5 for n in range(2,15)]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

sage: [F(n) % 3 for n in range(2,15)]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

User profile picture
2024-10-24 13:33
Comments