Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.2.17* ($19a^2 \equiv b^2 \pmod 7 \Rightarrow 19a^2 \equiv b^2 \pmod{7^2}$)

Exercise 3.2.17* ($19a^2 \equiv b^2 \pmod 7 \Rightarrow 19a^2 \equiv b^2 \pmod{7^2}$)

Show that if 19 a 2 b 2 ( mod 7 ) , then 19 a 2 b 2 ( mod 7 2 ) .

Answers

Proof. Suppose that 19 a 2 b 2 ( mod 7 ) for some integers a , b . Since 19 5 ( mod 7 ) , we obtain 5 a 2 b 2 ( mod 7 ) .

Assume for contradiction that 7 a . Then a has an inverse a ¯ modulo 7 , which satisfies

5 ( a ¯ b ) 2 ( mod 7 ) .

Therefore 5 is a quadratic residue modulo 7 , thus

1 = ( 5 7 ) .

But 5 1 ( mod 4 ) , hence

( 5 7 ) = ( 7 5 ) = ( 2 5 ) = 1 .

This is a contradiction, which proves that 7 a .

Since 7 a , and 5 a 2 b 2 = 7 k for some integer k , 7 b 2 , thus 7 b because 7 is prime. Therefore 7 2 a 2 , 7 2 b 2 , so

19 a 2 b 2 0 ( mod 7 2 ) .

If 19 a 2 b 2 ( mod 7 ) , then 19 a 2 b 2 ( mod 7 2 ) . □

User profile picture
2024-10-25 08:08
Comments