Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.2.18* ($1001$ is a quadratic residue $\pmod {1111118111111}$)

Exercise 3.2.18* ($1001$ is a quadratic residue $\pmod {1111118111111}$)

Given that 1111118111111 is prime, determine whether 1001 is a quadratic residue ( mod 1111118111111 ) .

Answers

Proof. Let p = 1111118111111 . Since 1001 1 ( mod 4 ) ,

( 1001 p ) = ( p 1001 ) = ( 1001 × 1110008103 + 8 1001 ) = ( 8 1001 ) = ( 2 1001 ) 2 ( 2 1001 ) = ( 2 1001 ) = 1 ,

because 1001 1 ( mod 8 ) . □

Therefore 1001 is a quadratic residue ( mod 1111118111111 ) .

Check :

sage: is_prime(1111118111111)
True
sage: kronecker(1001,1111118111111)
1

User profile picture
2024-10-25 08:24
Comments