Exercise 3.2.1 ($x^2 \equiv 10 \pmod{89}$ is solvable.)

Verify that x 2 10 ( mod 89 ) is solvable.

Answers

Proof. 89 is a prime number, and

( 10 89 ) = ( 2 89 ) ( 5 89 ) ,  where ( 2 89 ) = ( 1 ) ( 8 9 2 1 ) 8 = 1 , ( 89 1 ( mod 8 ) ) ( 5 89 ) = ( 89 5 ) ( 5 1 ( mod 4 ) ) = ( 4 5 ) = ( 2 5 ) 2 = 1 .

Therefore

( 10 89 ) = 1 ,

hence x 2 10 ( mod 89 ) is solvable. □

sage: kronecker(10,89)
1
sage: a = Mod(10, 89)
sage: a.sqrt()
30

User profile picture
2024-10-22 08:51
Comments