Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.2.8 (Primes $p$ such that $\genfrac{(}{)}{}{}{10}{p} = 1$.)

Exercise 3.2.8 (Primes $p$ such that $\genfrac{(}{)}{}{}{10}{p} = 1$.)

Find all primes p such that ( 10 p ) = 1 .

Answers

Proof. Since 5 1 ( mod 4 ) ,

( 5 p ) = 1 ( p 5 ) = 1 p 1 , 4 ( mod 5 ) .

Therefore, using ( 10 p ) = ( 2 p ) ( 5 p ) ,

( 10 p ) = 1 { ( 2 p ) = 1 and ( 5 p ) = 1 , or ( 2 p ) = 1 and ( 5 p ) = 1 , { p 1 , 7 [ 8 ] and p 1 , 4 [ 8 ] , or p 3 , 5 [ 8 ] and p 2 , 3 [ 5 ] , { p 1 [ 8 ] p 1 [ 5 ]  or  { p 1 [ 8 ] p 4 [ 5 ]  or  { p 7 [ 8 ] p 1 [ 5 ]  or  { p 7 [ 8 ] p 4 [ 5 ]  or  { p 3 [ 8 ] p 2 [ 5 ]  or  { p 3 [ 8 ] p 3 [ 5 ]  or  { p 5 [ 8 ] p 2 [ 5 ]  or  { p 5 [ 8 ] p 3 [ 5 ] p 1 , 9 , 31 , 39 , 3 , 27 , 37 , 13 ( mod 40 ) .

So

( 10 p ) = 1 p 1 , 3 , 9 , 13 , 27 , 31 , 37 , 39 ( mod 40 ) .

(The first such primes are p = 3 , 13 , 31 , 37 , 41 , 43 , 53 , 67 , 71 , 79 , 83 , 89 , 107 , 151 , ) □

Verification with Sage.

sage: prem = prime_range(1000)
sage: l1 = [p for p in prem if kronecker(10,p) == 1]
sage: l2 = [p for p in prem if p % 40 in [1, 3, 9 ,13, 27, 31, 37, 39]]
sage: l1 == l2
True

User profile picture
2024-10-23 09:38
Comments