Exercise 3.3.1 (Some Jacobi symbols)

Evaluate: ( 23 83 ) ; ( 51 71 ) ; ( 71 73 ) ; ( 35 97 ) .

Answers

Proof.

Using Theorems 3.6, 3.7, 3.8, we obtain

(a)
( 23 83 ) = ( 1 83 ) ( 23 83 ) ( 83 1 ( mod 4 ) ) = ( 23 83 ) = ( 83 23 ) ( 23 1 ( mod 4 ) ) = ( 14 23 ) = ( 2 23 ) ( 7 23 ) ( 23 1 ( mod 8 ) ) = ( 7 23 ) = ( 23 7 ) ( 7 1 ( mod 4 ) ) = ( 2 7 ) = 1 .
(b)
Similarly ( 51 71 ) = ( 71 51 ) = ( 20 51 ) = ( 2 51 ) 2 ( 5 51 ) = ( 5 51 ) = ( 51 5 ) = ( 1 5 ) = 1 .
(c)
( 71 73 ) = ( 2 73 ) = ( 1 73 ) ( 2 73 ) = 1 .
(d)
( 35 97 ) = ( 1 97 ) ( 35 97 ) = ( 35 97 ) = ( 97 35 ) = ( 27 35 ) = ( 35 27 ) = ( 8 27 ) = ( 2 27 ) 3 = 1 .

Check:

sage: j = kronecker
sage: j(-23,83), j(51,71), j(71,73), j(-35,97)
(-1, -1, 1, 1)

User profile picture
2024-11-01 09:15
Comments