Exercise 3.3.7 (Congruence $x^2 + y^2 \equiv 0 \pmod p$)

For which primes p do there exist integers x and y with ( x , p ) = 1 , ( y , p ) = 1 , such that x 2 + y 2 0 ( mod p ) .

Answers

Proof. Suppose that x 2 + y 2 0 ( mod p ) , where x p = 1 (then y p = 1 ). Let x ¯ be an inverse of x modulo p , so that x x ¯ 1 ( mod p ) . Then

1 + ( y x ¯ ) 2 0 ( mod p ) ,

thus 1 is a quadratic residue modulo p , therefore p = 2 , or p is odd and ( 1 p ) = 1 . This gives ( 1 ) ( p 1 ) 2 = 1 , thus ( p 1 ) 2 is even. This shows that

p = 2  or  p 1 ( mod 4 ) .

Conversely, if p = 2 then 1 2 + 1 2 0 ( mod p ) , and if p 1 ( mod 4 ) , then ( 1 p ) = ( 1 ) ( p 1 ) 2 = 1 , therefore there is some integer a such that a 2 + 1 0 ( mod p ) . Put x = a , y = 1 . Then x 2 + y 2 1 , where p y = 1 , and p x , otherwise p 1 .

To conclude, if p is a prime number,

x , y , x p = 1  and  y p = 1  and  x 2 + y 2 0 ( mod p ) p = 2  or  p 1 ( mod 4 ) .
User profile picture
2024-11-02 09:09
Comments