Exercise 3.4.1 (Definite and indefinite forms)

For each of the following, determine whether the form is positive definite, negative definite, or indefinite.

( a ) x 2 + y 2 ; ( b ) x 2 y 2 ; ( c ) x 2 2 y 2 ; ( d ) 10 x 2 9 xy + 8 y 2 ; ( e ) x 2 3 xy + y 2 ; ( f ) 17 x 2 26 xy + 10 y 2 .

Answers

Proof. Using (2.11), we obtain

(a)
Here d = 4 < 0 , a = 1 > 0 , thus x 2 + y 2 is positive definite.
(b)
d = 4 < 0 , a = 1 < 0 , thus x 2 y 2 is negative definite.
(c)
d = 8 > 0 , thus x 2 2 y 2 is indefinite.
(d)
d = 9 2 4 8 10 = 239 , a = 10 > 0 , thus 10 x 2 9 xy + 8 y 2 is positive definite.
(e)
d = 5 , thus x 2 3 xy + y 2 is indefinite.
(f)
d = 2 6 2 4 17 10 = 4 , a = 17 > 0 , thus 17 x 2 26 xy + 10 y 2 is positive definite.
User profile picture
2024-11-12 09:32
Comments