Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 3.4.5 (Finite number of representations by a positive definite quadratic form)

Exercise 3.4.5 (Finite number of representations by a positive definite quadratic form)

(a)
Let A and B be real numbers, and put F ( ϕ ) = A cos ϕ + B sin ϕ . Using calculus, or otherwise, prove that max 0 ϕ 2 π F ( ϕ ) = A 2 + B 2 , and that min 0 ϕ 2 π F ( ϕ ) = A 2 + B 2 .
(b)
Let f ( x , y ) denote the quadratic form a x 2 + bxy + c y 2 . Convert to polar coordinates by writing x = r cos 𝜃 , y = r sin 𝜃 . Show that f ( r cos 𝜃 , r sin 𝜃 ) = r 2 ( a + c + ( a c ) cos 2 𝜃 + b sin 2 𝜃 ) 2 (*). Show that if r is fixed and 𝜃 runs from 0 to 2 π , then the maximum and minimum values of f ( r cos 𝜃 , r sin 𝜃 ) are r 2 ( a + c ± ( a + c ) 2 + d ) 2 .

(c)
Let f be a positive definite quadratic form. Prove that there exists positive constants C 1 and C 2 (which may depend on the coefficients of f ) such that C 1 ( x 2 + y 2 ) f ( x , y ) C 2 ( x 2 + y 2 ) for all real numbers x and y .
(d)
Conclude that if f is a positive definite quadratic form then an integer n has at most a finite number of representations by f .

(*) I fixed the obvious misprint.

Answers

Proof.

(a)
If A = B = 0 , then F = 0 , and max 0 ϕ 2 π F ( ϕ ) = min 0 ϕ 2 π F ( ϕ ) = 0 = A 2 + B 2 .

Suppose now that ( A , B ) ( 0 , 0 ) , so that A 2 + B 2 0 .

Put α = A A 2 + B 2 , β = B A 2 + B 2 . Since α 2 + β 2 = 1 , there is some real ϕ 0 such that α = cos ϕ 0 , β = sin ϕ 0 . Then

F ( ϕ ) = A cos ϕ + B sin ϕ = A 2 + B 2 ( A A 2 + B 2 cos ϕ + B A 2 + B 2 sin ϕ ) = A 2 + B 2 ( cos ϕ 0 cos ϕ + sin ϕ 0 sin ϕ ) = A 2 + B 2 cos ( ϕ ϕ 0 ) .

Since | cos ( ϕ ϕ 0 ) | 1 for all real ϕ , | F ( ϕ ) | A 2 + B 2 , thus

A 2 + B 2 F ( ϕ ) A 2 + B 2 .

Moreover, F ( ϕ 0 ) = A 2 + B 2 , F ( ϕ 0 + π ) = A 2 + B 2 , hence

max 0 ϕ 2 π F ( ϕ ) = + A 2 + B 2 , min 0 ϕ 2 π F ( ϕ ) = A 2 + B 2 .
(b)
Here f ( x , y ) = a x 2 + bxy + c y 2 . For any ordered pair ( x , y ) 2 (even if x = y = 0 ), there exist real numbers r , 𝜃 such that x = r cos 𝜃 , y = r sin 𝜃 . Then, using the formulas cos 2 𝜃 = 1 + cos 𝜃 2 , sin 2 𝜃 = 1 cos 𝜃 2 , cos 𝜃 sin 𝜃 = 1 2 sin 2 𝜃 ,

we obtain

f ( x , y ) = f ( r cos 𝜃 , r sin 𝜃 ) = r 2 ( a cos 2 𝜃 + b cos 𝜃 sin 𝜃 + c sin 2 𝜃 ) = r 2 2 ( a ( 1 + cos 2 𝜃 ) + b sin 2 𝜃 + c ( 1 cos 2 𝜃 ) ) = r 2 2 ( a + c + ( a c ) cos 2 𝜃 + b sin 2 𝜃 ) .

Using part (a),

max 0 ϕ 2 π f ( r cos 𝜃 , r sin 𝜃 ) = r 2 2 ( a + c + ( a + c ) 2 + b 2 ) , min 0 ϕ 2 π f ( r cos 𝜃 , r sin 𝜃 ) = r 2 2 ( a + c ( a + c ) 2 + b 2 ) .

Moreover

( a c ) 2 + b 2 = a 2 + c 2 2 ac + b 2 = a 2 + c 2 + 2 ac + ( b 2 4 ac ) = ( a + c ) 2 + d ,

where d is the discriminant of the form f . So

max 0 ϕ 2 π f ( r cos 𝜃 , r sin 𝜃 ) = r 2 2 ( a + c + ( a + c ) 2 + d ) , min 0 ϕ 2 π f ( r cos 𝜃 , r sin 𝜃 ) = r 2 2 ( a + c ( a + c ) 2 + d ) .

(Here ( a + c ) 2 + d = ( a c ) 2 + b 2 0 .)

(c)
Put C 1 = a + c ( a + c ) 2 + d 2 , C 2 = a + c + ( a + c ) 2 + d 2 .

We must verify that C 1 > 0 , C 2 > 0 for a definite positive quadratic form f . In this case d < 0 , and a > 0 , c > 0 (Theorem 3.11). Moreover, since a + c > 0 ,

C 1 > 0 a + c < ( a + c ) 2 + d ( a + c ) 2 < ( a + c ) 2 + d d < 0 ,

and

C 2 = a + c + ( a + c ) 2 + d 2 a + c 2 > 0 .

By part (b), for all real r , 𝜃 ,

C 1 r 2 f ( r cos 𝜃 , r sin 𝜃 ) C 2 r 2 .

Here x = r cos 𝜃 , y = r sin 𝜃 , thus r 2 = x 2 + y 2 . Therefore, for all real numbers x , y (a fortiori for all integers x , y )

C 1 ( x 2 + y 2 ) f ( x , y ) C 2 ( x 2 + y 2 ) ,

where C 1 , C 2 are positive constants depending only on the coefficients of f .

(d)
Let f be a definite positive quadratic form, and let n be an integer. If ( x , y ) is a representation of n for the form f ( x , y ) , so that f ( x , y ) = n , then by part (c) C 1 ( x 2 + y 2 ) n ,

where C 1 > 0 . Therefore

| x | x 2 + y 2 n C 1 , | y | x 2 + y 2 n C 1 ,

thus

A x A , A y A .

where A = n C 1 .

Hence there are at most ( 2 A + 1 ) 2 representations.

If f is a positive definite quadratic form then an integer n has at most a finite number of representations by f .

User profile picture
2024-11-13 10:14
Comments