Exercise 3.5.11 ($\mathrm{gcd}(a,b,c)$ is an invariant.)

Suppose that a x 2 + bxy + c y 2 A x 2 + Bxy + C y 2 . Show that g . c . d . ( a , b , c ) = g . c . d . ( A , B , C ) .

Answers

Proof. Let f , g be the quadratic forms f ( x , y ) = a x 2 + bxy + c y 2 , g ( x , y ) = A x 2 + Bxy + C y 2 . Write δ = gcd ( a , b , c ) , and Δ = gcd ( A , B , C ) . Then g = f A , where

A = ( m 11 m 12 m 21 m 22 ) Γ ,

so that

g ( x , y ) = f ( m 11 x + m 12 y , m 21 x + m 22 y ) = a ( m 11 x + m 12 y ) 2 + b ( m 11 x + m 12 y ) ( m 21 x + m 22 y ) + ( m 21 x + m 22 y ) 2 .

By equations (3.7),

A = a m 11 2 + b m 11 m 21 + c m 21 2 , ( 3.7 a ) B = 2 a m 11 m 12 + b ( m 11 m 22 + m 12 m 21 ) + 2 c m 21 m 22 , ( 3.7 b ) C = a m 12 2 + b m 12 m 22 + c m 22 2 . ( 3.7 c )

Since δ a , δ b , δ c , then δ A by (3.7a), δ B by (3.7b), δ C by (3.7c). Therefore δ Δ .

Consider now

A 1 = ( m 11 m 12 m 21 m 22 ) .

Since Γ is a group, A 1 Γ , so m 11 , m 12 , m 21 , m 22 are integers, and det ( A 1 ) = 1 .

Moreover, for all A , B Γ ,

( f A ) B = f ( AB ) , f I = f .

(This says that Γ acts on the right on the set of binary quadratic forms with integers coefficients.)

Therefore g A 1 = f , so that the equations (3.7) give

a = A m 11 2 + B m 11 m 21 + C m 21 2 , ( 3.7 a ) b = 2 A m 11 m 12 + B ( m 11 m 22 + m 12 m 21 ) + C m 21 m 22 , ( 3.7 b ) c = A m 12 2 + B m 12 m 22 + C m 22 2 . ( 3.7 c )

The same reasoning shows that Δ δ .

Since δ Δ and Δ δ , where δ 0 , Δ 0 , we obtain δ = Δ , that is

gcd ( a , b , c ) = gcd ( A , B , C ) .

User profile picture
2024-11-21 10:56
Comments