Exercise 3.5.1 (Reduce $7x^2 + 25 xy + 23y^2$)

Find a reduced form that is equivalent to the form 7 x 2 + 25 xy + 23 y 2 .

Answers

Notations: We write f = ( a , b , c ) for the quadratic form f ( x , y ) = a x 2 + bxy + c y 2 . Moreover , if M = ( α β γ δ ) GL 2 ( ) , let us denote g = f M if g ( x , y ) = f ( αx + βy , γx + δy ) . Then ( f M ) N = f ( MN ) . If M Γ = SL 2 ( ) , we write f + g . Put S = ( 0 1 1 0 ) , T = ( 1 1 0 1 ) . Then

( a , b , c ) S = ( c , b , a ) , ( a , b , c ) T m = ( a , 2 am + b , a m 2 + bm + c ) .

Proof.

Put f ( x , y ) = 7 x 2 + 25 xy + 23 y 2 , so f = ( 7 , 25 , 23 ) .

We apply T 2 = ( 1 2 0 1 ) Γ = SL 2 ( ) to obtain

f 1 = f T 2 = ( 7 , 3 , 1 ) .

Since 7 > 1 , we apply S :

f 2 = f 1 S = ( 1 , 3 , 7 ) .

Then

f 3 = f 2 T 1 = ( 1 , 1 , 5 ) .

So x 2 + xy + 5 y 2 is a reduced form, properly equivalent to 7 x 2 + 25 xy + 23 y 2 . □

Check:

M = T 2 S T 1 = ( 2 1 1 1 ) Γ ,

and

( f M ) ( x , y ) = f ( 2 x + y , x y ) = 7 ( 2 x + y ) 2 + 25 ( 2 x + y ) ( x y ) + 23 ( x y ) 2 = x 2 + xy + 5 y 2 = f 3 ( x , y ) .

All these forms have discriminant 19 .

User profile picture
2024-11-15 10:42
Comments