Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 4.1.15* (Prove $\left \lfloor \xi \right \rfloor + \left \lfloor \xi + \frac{1}{n} \right \rfloor + \cdots + \left \lfloor \xi + \frac{n-1}{n}\right \rfloor = \left \lfloor n \xi \right \rfloor$)
Exercise 4.1.15* (Prove $\left \lfloor \xi \right \rfloor + \left \lfloor \xi + \frac{1}{n} \right \rfloor + \cdots + \left \lfloor \xi + \frac{n-1}{n}\right \rfloor = \left \lfloor n \xi \right \rfloor$)
If is any positive integer and any real number, prove that
Answers
(This is a generalization of Problem 6.)
Proof. We write , where . Note that
So there is a unique such that . This integer satisfies
thus
so
Moreover, for every ,
-
If , then , thus , so by inequality (1)
Moreover , so by inequality (1)
thus
-
If , then , thus , so by (1)
Moreover , so
Then the inequalities (6) and (7) give
thus
Now, using (5) and (8),
by equation (1). This proves
□