Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 4.1.15* (Prove $\left \lfloor \xi \right \rfloor + \left \lfloor \xi + \frac{1}{n} \right \rfloor + \cdots + \left \lfloor \xi + \frac{n-1}{n}\right \rfloor = \left \lfloor n \xi \right \rfloor$)

Exercise 4.1.15* (Prove $\left \lfloor \xi \right \rfloor + \left \lfloor \xi + \frac{1}{n} \right \rfloor + \cdots + \left \lfloor \xi + \frac{n-1}{n}\right \rfloor = \left \lfloor n \xi \right \rfloor$)

If n is any positive integer and ξ any real number, prove that

ξ + ξ + 1 n + + ξ + n 1 n = .

Answers

(This is a generalization of Problem 6.)

Proof. We write ξ = m + ν , where 0 ν < 1 . Note that

[ 0 , 1 [ = 0 i < n [ i n , i + 1 n [ (disjoint union) .

So there is a unique i [ [ 0 , n [ [ such that ν [ i n , i + 1 n [ . This integer i satisfies

m + i n ξ < m + i + 1 n ,

thus

nm + i < nm + i + 1 ,

so

= nm + i . (1)

Moreover, for every j [ [ 0 , n [ [ ,

m + i n + j n ξ + j n < m + i + 1 n + j n . (2)
  • If 0 j < n i , then j n i 1 , thus i + 1 n + j n < 1 , so by inequality (1)

    ξ + j n < m + 1 . (3)

    Moreover 0 i n + j n , so by inequality (1)

    m ξ + j n < m + 1 . (4)

    thus

    ξ + j n = m ( 0 j < n i ) . (5)
  • If n i j < n , then i + j n , thus i n + j n 1 , so by (1)

    ξ + j n m + i n + j n m + 1 . (6)

    Moreover j < n , i + 1 n , so

    ξ + j n < m + i + 1 n + j n < m + 2 . (7)

    Then the inequalities (6) and (7) give

    m + 1 ξ + j n < m + 2 ,

    thus

    ξ + j n = m + 1 ( n i j < n ) . (8)

Now, using (5) and (8),

j = 0 n 1 ξ + j n = j = 0 n i 1 ξ + j n + j = n i 1 n 1 ξ + j n = ( n i ) m + i ( m + 1 ) = nm + i = ,

by equation (1). This proves

ξ + ξ + 1 n + + ξ + n 1 n = .

User profile picture
2024-12-15 10:42
Comments